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ABSTRACT

The goal of this study is to investigate patterns that emerge in brain and heart signals in response to external stimulating image regimes.
Data were collected from 84 subjects of ages 18–22. Subjects viewed a series of both neutrally and negatively arousing pictures during 2-min
and 18-s-long segments repeated nine times. Both brain [electroencephalogram (EEG)] and heart signals [electrocardiogram (EKG)] were
recorded for the duration of the study (ranging from 1.5 to 2.5 h) and analyzed using nonlinear techniques. Specifically, the fractal dimen-
sion was computed from the EEG to determine how this voltage trace is related to the image sequencing. Our results showed that subjects
visually stimulated by a series of mixed images (a randomized set of neutrally or negatively arousing images) had a significantly higher fractal
dimension compared to subjects visually triggered by pure images (an organized set of either all neutral or all negatively arousing images).
In addition, our results showed that subjects who performed better on memory recall had a higher fractal dimension computed from the
EEG. Analysis of EKG also showed greater heart rate variability in subjects who viewed a series of mixed images compared to subjects visually
triggered by pure images. Overall, our results show that the healthy brain and heart are responsive to environmental stimuli that promote
adaptability, flexibility, and agility.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002764

In this study, we capture simultaneous brain and heart data in
healthy subjects to investigate the connection between the under-
lying nonlinear nature of voltage patterns to external image
regimes. For example, we found differences in the fractal dimen-
sion (FD) of the electroencephalogram (EEG) when subjects were
visually stimulated by a series of categorized pictures. Specifically,
subjects visually stimulated by a series of mixed images (a ran-
domized set of neutrally or negatively arousing images) had a sig-
nificantly higher fractal dimension compared to subjects visually
stimulated by pure images (an organized set of either all neutral
or all negatively arousing images). Analysis of electrocardiogram
(EKG) also showed greater heart rate variability (HRV) in sub-
jects who viewed a series of mixed images compared to subjects
visually triggered by pure images. In addition to these results,
we found that subjects who had better memory recall had signifi-
cantly higher fractal dimensions. These results may have medical
implications in terms of how we might non-invasively investigate

memory and physiological fitness. This is also an important result
to highlight the ubiquity of physics techniques in a variety of
relevant fields.

INTRODUCTION

Scientists across fields have computed the fractal dimension
(FD) of signals in a variety of systems in order to more fully
understand how nonlinearity plays a significant role in system
behavior (Goldberger and West, 1987; Katz, 1988; Kesic and Spa-
sic, 2016; Stam, 2005; and Wright et al., 1993). FD measures the
degree of nontrivial self-similarity in a system, the persistence
of patterns, or characteristic features of the system’s morphol-
ogy over multiple scales (Captur et al., 2017; Nayyeri, 2017; and
Riley et al., 2012). In other words, FD quantifies the characteris-
tic patterns viewed on a large scale that repeat on smaller scales
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(Arsac and Deschodt-Arsac, 2018). The fractal behavior of a sys-
tem, classified by neither exclusively regular nor entirely random
fluctuations, has been shown to be correlated with better health
outcomes (Iyengar et al., 1996). In many cases, the level of fractal
scaling can be used to differentiate between healthy and pathologi-
cal subjects (Golinska, 2012). Studies have reported that decreased
complexity or altered fractal dimensions reflect impaired adaptive
response to physiological stress as a result of aging or disease (Arsac
and Deschodt-Arsac, 2018; Golinska 2012; Iyengar et al., 1996; and
Peng et al., 1995). Typically, we associate irregular, complex sig-
nals with normal physiology, while consistent patterns are indicative
of reduced function (Pincus and Goldberger, 1994). Furthermore,
subjects with improved clinical outcomes display a certain range of
fractal behaviors, which are considered a signature of nonlinearity
(Delignieres et al., 2006). These patterns are visible on both long
and short time scales and suggest a degree of complexity that may
be indicative of human health; visualization and analysis of these
physiological signals could play a role in predicting and recogniz-
ing a disease (Nayyeri, 2017 and Pincus and Goldberger, 1994). By
looking at the FDs in EEG data in this study, we aim to obtain infor-
mation from standard voltage traces about their complexity under
different external image regimes and in relation to a subject’s overall
memory capabilities.

In addition to FD, we investigate the influence of these exter-
nal image regimes on heart rate variability in EKG data. Short-term
heart rate variability is evident and quantifiable by numerous meth-
ods (Piskorski and Guzik, 2007). Studies have shown that decreases
in heart rate variability may accompany adverse health states (Pincus
and Goldberger, 1994), and healthy heart dynamics often demon-
strate high frequency heart rate fluctuations (Iyengar et al., 1996).
These beat-to-beat fluctuations shown in the healthy heart may be
related to properties of cardiac and neural systems controlling their
output (Peng et al., 1995). Because low heart rate variability has been
associated with compromised health, while greater fluctuations have
been linked to normal, healthy physiology, the study of fluctuations
in the heart rate holds promising information for clinical and predic-
tive measures (Captur et al., 2017; Pincus and Goldberger, 1994; and
Shaffer and Ginsberg, 2017). Our work seeks to quantify changes in
the EKG to explore the connections between signal characteristics
and performance as an indicator of health.

In this study, we use mathematical techniques such as frac-
tal dimension for the brain (EEG) signals and heart rate variability
metrics for the heart (EKG) signals to calculate the degree of com-
plexity, self-similarity, and variability of voltage signals acquired.
We find FD in the brain and short-term heart rate variability met-
rics in the heart to investigate how these parameters correlate with
visual stimuli and a subject’s recall capability. We hypothesize that
highly complex signals in the brain and greater variability of signals
in the heart may be correlated with the external image regime and
indicative of better overall performance on memory recall.

METHOD

Participants

84 undergraduate students from the Wofford College
(58 female) between the ages of 18 and 22 (M = 19.98, SE = 0.125)
participated in this study for either course credit or a $20 Amazon

gift card. All participants provided written informed consent, and
procedures were approved by the Wofford College Institutional
Review Board. Six participants were excluded from analysis on
the basis of prior exposure to the images (n = 2), left-handedness
(n = 1), connection failure (n = 1), and neurological disorder
(n = 2). An additional 11 participants were excluded from the analy-
sis due to poor signal capture. Three more participants were omitted
from the heart rate analysis due to a low-quality EKG. This resulted
in a sample of 67 participants (47 female) included in the brain anal-
yses and 64 participants (44 female) included in the heart analyses.
All participants were right-handed. Each participant was assigned
to either a pure image regime (n = 32 for the brain; n = 31 for the
heart) or a mixed image regime (n = 35 for the brain; n = 33 for
the heart). Pure and mixed image regimes are described below. Par-
ticipants were not currently abusing drugs, did not receive general
anesthesia in the two weeks prior to testing, and did not sustain a
concussion in the month prior to testing.

Study materials: Image regimes explained

In this study, two image regimes (pure and mixed) were cre-
ated for subjects to view. To create these two image regimes, the
following protocol was implemented. 66 negative, 66 related neutral
(we will refer to as categorical), and 66 unrelated neutral (we will
refer to as neutral) images resized to 500 by 400 pixels were selected
from a pool of 100 unrelated neutral images, 150 related neutral
images, and 150 negative images sourced from the International
Affective Picture System (Lang et al., 1995), the Geneva Affective
Picture Database (Dan-Glauser and Scherer, 2011), the Emotional
Picture Set (Wessa et al., 2010), the image pool of Talmi et al. (2007),
and Google Images. Participants rated images on arousal (perceived
physiological state), valence (how pleasant or unpleasant the image
made the participant feel), and relatedness (how semantically asso-
ciated with other pictures a particular image was) in pilot studies.
Participants rated both arousal and valence on nine-point scales.
For arousal, the scale was graded from “calm/soothing” to “excit-
ing/agitating.” For valence, the scale ranged from “very unpleasing”
to “very pleasing.” Participants rated images’ relatedness on a seven-
point scale from “low association” to “high association.” Participants
were given examples of categorically related images (a handgun and
a rifle; walking and running) as well as thematically related images
(an umbrella and clouds) prior to rating. To ensure that image cat-
egories did not differ in brightness or complexity, the luminosity
rating was also calculated for each image using Photoshop, and
complexity ratings were taken from three independent raters.

Subjects were randomly assigned to either a pure image regime
or a mixed image regime. In the pure image regime, subjects viewed
images that were all neutral, all negative, or all categorical for a
total of nine segments. Each segment contained 22 images from
one of the three groups (i.e., negative, neutral, or categorical). The
nine segments were always ordered in the following way: negative
(segment 1), categorical (segment 2), neutral (segment 3), categori-
cal (segment 4), neutral (segment 5), negative (segment 6), neutral
(segment 7), negative (segment 8), and categorical (segment 9).
For the mixed image regime, subjects viewed nine segments of a
mix of neutral, negative, and categorical images for every segment.
For example, in the mixed list for segment 1, the 22 images were
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TABLE I. Means and standard errors for pure image selections.

Negative mean
Negative

standard error Categorical mean
Categorical

standard error Neutral mean
Neutral

standard error

Arousal 7.212 0.075 4.872 0.083 4.838 0.068
Valence 2.711 0.074 5.139 0.086 5.090 0.058
Relatedness 3.626 0.085 3.589 0.048 1.981 0.017
Luminosity 106.105 3.048 106.353 1.304 107.516 3.030
Complexity 3.025 0.085 3.062 0.116 3.025 0.134

a random sampling of negative, neutral, and categorical images.
Overall, image regimes were balanced such that negative images
were rated significantly lower on valence and significantly higher on
arousal than either categorical or neutral, which did not significantly
differ from each other on either measure (Tables I and II). Both neg-
ative and categorical images were rated as significantly more related
than neutral images but did not differ from each other in relatedness
(Tables I and II). All image types were matched on both complexity
and luminosity (Tables I and II). An additional categorical list and
an additional mixed list were created to be used as the practice test
from unselected images rated in the initial pool. The practice test
gave participants an opportunity to try the testing procedure before
recordings started.

Participants reported their depression and anxiety levels using
standardized questionnaires including a 19-item version of the Beck
Depression Inventory (BDI-I; Beck et al., 1961) and a 21-item ver-
sion of the Beck Anxiety Inventory (BAI; Beck et al., 1988), both of
which have been demonstrated as reliable and concise measures of
depression and anxiety levels.

Procedure

After participants gave consent to participate in the study,
a Cortech ActiveTwo 32 Channel EEG System (Manufac-
turer: Cortech Solutions; Model Specifications: Model Number
DA-AT_HCL32) from the Behavioral Brain Sciences Center, Birm-
ingham, UK, was applied to the participant’s scalp while he or she
completed the depression and anxiety questionnaires (BDI-I and
BAI) and the practice test.

The experiment consisted of nine segments. In each segment,
participants first viewed 22 images. Images were presented in

TABLE II. t-test image-balancing comparisons between selected image pools.

Significant differences denoted by <0.001. As intended, negative images were more

arousing and negatively valenced than either neutral groups but did not differ in lumi-

nosity or complexity. In addition, negative and categorical images were more related

than neutral images.

Neutral to
categorical

Negative to
neutral

Negative to
categorical

Arousal 0.752 <0.001 <0.001
Valence 0.634 <0.001 <0.001
Relatedness <0.001 <0.001 0.706
Luminosity 0.724 0.743 0.940
Complexity 0.838 0.999 0.801

E-Prime 3.0 (Psychology Software Tools, Pittsburgh, PA). Each
image was presented for 2 s followed by a fixation cross (solid white
screen with a central black plus sign symbol) that was presented
for 4 s. The fixation cross between each image was used to reduce
any remaining emotional responses carrying over from the previous
image (Talmi and McGarry, 2012). After viewing all 22 images, par-
ticipants completed a 1-min arithmetic task, which prevented them
from having an increased memory for the images that appeared at
the end of the list. Following the arithmetic task, participants were
asked to recall as many images as they could for up to 3 min.

Data processing and reduction

For the EEG recording, sites were referenced online to two
mastoid electrodes and re-referenced offline using the common
average reference. Electrode offsets were between 0 and ±30 mV.
Signals were amplified, bandpass filtered (0.03–30 Hz), and dig-
itized at 1024 Hz. Two EOG electrodes were used to track eye
movements. Three EKG electrodes also recorded heart rate data dur-
ing the experiment. All data were cleaned to remove any artifacts
that impeded the voltage signals. Blinks were removed using the
Electromagnetic Source Estimation (EMSE) manual artifact tool.

Analyses were performed based on image regimes (pure vs
mixed). Fractal dimensions were computed in EEG, and heart rate
variability metrics were computed in EKG to determine the impact
of the two image lists (pure vs mixed) on the acquired signals. Com-
plexity in EEG and variability in the heart were also analyzed in con-
nection with overall memory performance. To investigate EEG and
EKG patterns from subjects who viewed the mixed image regime
vs the pure image regime, we ran a standard independent sample
t-test in SPSS Statistics software to compare the mean from these
two groups. All reports used Levene’s Test for Equality of Variances
(with equal variances not assumed) to determine p-value statistics.
We also computed paired sample t-tests within each subject dur-
ing testing to analyze drift and variation throughout the course of
the study. Furthermore, we looked at the difference in each image
regime to see if patterns emerged within each list type (i.e., analysis
entirely within the pure image regime). We also computed fractal
dimensions and heart rate variability in correlation with subjects’
memory scores (MSs). The level of significance was set at p = 0.05,
although in some cases, marginal significance of 0.05 < p < 0.06 is
noted.

Analyzing voltage data

Data were analyzed using robust methods to determine
self-similarity and variability. Voltage signals acquired from the
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scalp (i.e., EEG signals) were analyzed using the Higuchi method
to determine FD (Higuchi, 1988). Data acquired from the EKG were
analyzed using short-term heart rate metrics. These were obtained
by analyzing the time between two consecutive R-waves of the EKG
known as the RR interval. We used the RR interval to determine
the percentage of sequential RR intervals that differ by more than
50 ms (pNN50), the standard deviation (SD) of the Poincaré plot
perpendicular to the line of identity (SD1) and along the line of
identity (SD2) and the standard deviation of normal to normal inter-
vals (SDNN) (Shaffer and Ginsberg, 2017). The results are discussed
below.

Computational methods for the brain

The Higuchi method was used to determine a met-
ric of complexity for the brain. This method of calculat-
ing fractal dimensions determines the length of the curve
for a collection of a time series. The time series is defined
as Xm

k ; X(m), X(m + k), X(m + 2k), . . . , X
(

m + N−m
k

· k
)

, (m = 1,
2, . . . , k), in which m and k are integers representing the initial
time and the interval time, respectively, and N represents the total
number of data points. The length of the curve Xm

k is then given by

Lm(k) =

{[

∑

[

N−m
k

]

i=1

∣

∣X(m + ik) − X(m + (i − 1) · k)
∣

∣

]

N−1
N−m

k
·k

}

/k.

For the time interval k, the curve length 〈L(k)〉 represents the aver-
age value over k sets of Lm(k). A value for 〈L(k)〉 proportionate to
k−D indicates a fractal with dimension D (Higuchi, 1988).

In order to use the Higuchi algorithm to calculate FD, we
needed to determine a maximum value for the algorithm’s depen-
dent parameter k, which we define as Kmax. The parameter k refers
to the time interval between time series observations and represents
the number of distinct sets of time series obtained from various ini-
tial times. The model was optimized via a computational experiment
to determine a Kmax value that would be used for all electrodes. In
order to determine Kmax, six electrodes were chosen from equally
spaced regions within the electrode grid to give the best visual of the
expanse of the brain. Specifically, electrodes Fp1, T7, Oz, T8, Fp2,
and Cz were chosen from the brain (see Fig. 1). Data from these
six electrodes were used to determine the optimal Kmax to run the
Higuchi algorithm so that the fractal dimension plateaued and the
computational run time was reasonable. A Kmax of 58 was deter-
mined to be the optimal value to achieve both goals. To confirm this
result, we also computed the peak of the sum of differences of the
fractal dimension as a function of Kmax (from 1 to 100) in every sub-
ject for the six chosen electrodes. Five out of six electrodes had their
peak at Kmax = 58.

After determining a Kmax value of 58 computationally, we
divided the raw EEG from all 32 electrodes of each participant into
nine segments, which corresponded to the nine periods when the
subject viewed the images. Each segment lasted 2 min and 18 s and
includes data from 3 s before the subject viewed the first image until
2 s after the subject viewed the final image. The nine segments of
EEG data were then run through the Higuchi algorithm for each of
the 32 electrodes individually so that every participant had 32 FD
values associated with each segment, one value for each electrode on
the cap. The arithmetic mean of the 32 FD values was also computed

FIG. 1. Map of 32 electrodes highlighting the 6 electrodes from which Kmax was
computed.

to find the average fractal dimension (AFD) per participant for each
segment.

To assign a memory score, we analyzed each subject’s per-
formance in memory after each segment by asking participants to
describe every image they could remember from that segment. The
memory score was measured by the percentage of images in each
group correctly identified as remembered. Subjects were also given
three separate scores from 0 to 100 for their ability to recall negative,
neutral, and categorical images. The subjects’ recall was highest on
negative images, which is consistent with the literature (Talmi et al.,
2007; Kensinger, 2009; Talmi and McGarry, 2012; and Schmidt and
Saari, 2007).

In addition to calculating FDs for each of the nine individ-
ual segments, for participants who viewed pure lists that were only
categorical, negative, or neutral for the entire duration of each seg-
ment, we also computed the average FD and the FDs of the 32
electrodes across the three categorical, three neutral, and three neg-
ative segments to analyze each segment type (i.e., negative, neutral,
and categorical). This gave us a single AFD and an electrode-based
fractal dimension associated with each of the image types (negative,
neutral, and categorical) for each participant viewing the pure image
regime. We compared the calculated FD values of each image type
(negative, neutral, and categorical) to corresponding memory scores
for each image type. Similarly, for each of the mixed image regimes,
we computed the AFD and each electrode’s FD across the nine
individual segments as well as across the triplet of segment type to
evaluate FD values in relation to memory scores and in comparison
with the corresponding pure segment types.
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Analyzing the heart rate data

The participants’ EKG data recorded during each of the nine
segments were split into 6-s intervals. Each 6-s interval com-
menced when the subject began viewing a given image and ended
before the following image was shown. These segments were
normalized and filtered through MATLAB’s Savitzky-Golay filter
(Sgolay, MathWorks).

We used MATLAB’s “findpeaks” algorithm to identify each R
wave peak to extract RR interval data. After initial cleaning, the 6-s
segments were stitched back together, and two independent research
assistants manually checked the data for false and missed RR interval
assignments. These were corrected manually before the voltage data
were analyzed.

RR intervals were analyzed for SDNN, pNN50, SD1, and
SD2. The standard deviation of normal-to-normal intervals (SDNN)
(normal referring to heartbeats originating only in the sinoatrial
node rather than being induced ectopically, or elsewhere) and the
percentage of successive RR intervals that differ by more than 50 ms
(pNN50) are measurements that seek to quantitatively address the
variability present in time intervals between heartbeats. SD1 and
SD2 are nonlinear measures of heart rate variability that apply stan-
dard deviations of points from the Poincaré scatterplot to visualize
patterns and trends of time series.

FINDINGS AND ANALYSIS

Brain results: Fractal dimension in EEG and image

regimes

Fractal dimensions were computed for each electrode (32 total)
from the expanse of the brain. We also report the fractal dimen-
sion averages from all 32 electrodes (AFD). Fractal dimensions are
presented for each segment type (negative, neutral, and categorical),
over the entire nine segments, and segment-by-segment (i.e., 1–9).

Subjects viewing mixed image regimes had overall higher FDs
when compared to the FDs of subjects who viewed pure image
regimes. We created brain maps to identify the electrodes that
exhibited significant behavior between the mixed image regime and
the pure image regime. The brain maps are presented in Fig. 2.
Specifically, the fractal dimensions were higher (p < 0.05) in sub-
jects viewing the mixed vs the pure lists. For example, for the entire
set of all nine segments, 16 of the 32 electrodes displayed signifi-
cance as highlighted in Fig. 2(a). This result persisted for the average
computed over segment types. To calculate the averages over the
segment type, we implemented the following procedure. First, we
averaged the FD per electrode of all three neutral segments (pure
segments 3, 5, and 7) from the pure subjects and compared the result
to the FD averages of the corresponding mixed list segment numbers
(mixed segments 3, 5, and 7) of the mixed subjects. We found that 20
out of 32 electrodes had a statistically significant higher FD for the
mixed list compared to the pure neutral list [Fig. 2(b)]. Similarly,
comparing the three categorical segments (pure segments 2, 4, and
9) from the pure subjects to the corresponding mixed list segment
numbers (mixed segments 2, 4, and 9) reveals that 14 out of 32 elec-
trodes were significant during the categorical segments [Fig. 2(c)].
Finally, comparing the three negative segments (pure segments 1, 6,
and 8) to the corresponding mixed list segments (mixed segments

1, 6, and 8), we found that 10 out of 32 electrodes were significant
[Fig. 2(d)]. In each of the cases reported, fractal dimensions were
higher in subjects stimulated by mixed image lists as opposed to
image lists organized according to the image type (categorical, nega-
tive, or neutral). The AFD for this result is reported in Fig. 3. Overall,
higher FD corresponded to the mixed image regime. Since subjects
who viewed the mixed image regime had an overall higher FD com-
pared to subjects who viewed the pure image regime, we hypothesize
that an alternating external image regime may influence EEG. These
data may suggest that mixing images that evoke a range of emotional
responses caused a constant switching in the brain that contributed
to a more complex waveform, whereas the methodical nature of the
pure lists reduced the complexity of the corresponding brain sig-
nals, possibly due to habituation of the type of image the subject
viewed throughout the sequence. A mixed image regime seems to
illicit a more malleable, dynamic response in subjects compared to
the consistent sequence resulting from the pure regime.

Fractal dimension based on segment number (i.e., 1–9) was
also computed as a function of the pure or mixed image regime.
Specifically, the fractal dimension was averaged over all electrodes
per subject during each of the nine segments. The average frac-
tal dimension per segment was compared between image regimes
(mixed and pure). In comparing each of the segments between the
pure and mixed subject assignments, six out of nine segments were
statistically significant (Fig. 4). In particular, FD values from the
mixed group were significantly higher in the first six segments of
testing (i.e., the first sequential two–thirds of the testing period) cor-
responding to the negative, categorical, neutral, categorical, neutral,
and negative segments. The last three segments (neutral, negative,
and categorical) did not exhibit significance in FD. Comparing the
pure vs the mixed groups reveals that participants who viewed mixed
lists had a statistically significant higher fractal dimension com-
pared to the subjects who viewed pure lists (categorical, negative,
or neutral) during the first six segments of testing. This is consistent
with our first reported finding that the mixed image regime showed
significantly higher FDs than the pure image regime.

In summary, subjects stimulated by mixed image lists had
higher FDs when compared to subjects stimulated by pure image
lists organized according to image type (categorical, negative, or
neutral). This suggests that the FD may be influenced by a visu-
ally changing external image regime, and variable external patterns
of stimulation contribute to activating the brain differently com-
pared to an external image regime in which the same thematic
group of images occurs. This may suggest that an alternating image
regime can evoke a different response in the resulting voltage pattern
compared to a constant image regime, which may be applicable to
developing a form of clinical stress testing to investigate brain fitness
or to crafting a therapeutic exercise, based on a switching stimulus
pattern.

Brain results: Fractal dimension in EEG and memory

Our finding that the fractal dimensions were higher in the
mixed list case vs the pure list case suggests that the image regime
pattern evoked a response in subjects who scaled with complex-
ity. We also investigated the fractal dimension of subjects with
their respective memory scores in a similar manner. We found
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FIG. 2. Electrodemaps illustrating significant fractal dimensions for different segment types and all segments. Highlighted electrodes in (a) illustrates the location of electrodes
with higher FD for the mixed image regime compared to the pure image regime for all segments. (b) shows the electrodes with higher FD for the mixed image regime compared
to the pure image regime for neutral segments. (c) shows the electrodes with higher FD for the mixed image regime compared to the pure image regime for categorical
segments. (d) shows the electrodes with higher FD for the mixed image regime compared to the pure image regime for the negative segments.
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FIG. 3. Average fractal dimension (AFD) for the mixed image regime (blue) and the pure image regime (orange). Results are presented for the segment types [negative
(p-value= 0.079), neutral (p-value= 0.007), and categorical (p-value= 0.027)] as well as for all segments [all (p-value= 0.024)]. Our results show that the mixed image
regime has a significantly higher FD (denoted by *) compared to the pure image regime.

that for subjects viewing pure images only, there was a correlation
between their memory score and their fractal dimensions. Specifi-
cally, subjects who had higher memory scores also had higher fractal
dimensions. We found this result under the following conditions.
For subjects who viewed negative images, a higher memory score
correlated with higher fractal dimensions in 21 of the 32 electrodes
(with 5 of the 21 electrodes displaying marginal significance). We
illustrate this finding in the brain map [Fig. 5(a)] and in Fig. 6 for

the AFD. Similar results for the categorical data showed a correla-
tion between higher fractal dimensions and higher memory score in
18 out of the 32 electrodes, displayed in Figs. 5(b) and 6 for the AFD.
This supports findings emphasizing the role of semantic related-
ness in memory processes, favoring categorical stimuli over random
(Talmi and Moscovitch, 2004). For the case of neutral segments, we
found that 4 out of the 32 electrodes were significant. This finding is
illustrated in Figs. 5(c) and 6 for the AFD. Overall, these data suggest

FIG. 4. Average fractal dimension (AFD) per segment for the mixed image regime (blue) and the pure image regime (orange). Our results show that the mixed image regime
has significantly higher FDs (denoted with *) for the first six segments compared to the pure image regime.
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FIG. 5. Electrode maps illustrating fractal
dimensions by memory. Higher fractal dimen-
sions were correlated with better memory
scores in highlighted electrodes. (a) illustrates
higher fractal dimension with better mem-
ory scores for subjects viewing the negative
pure image regime. (b) illustrates higher frac-
tal dimension with better memory scores for
subjects viewing the categorical pure image
regime. (c) illustrates higher fractal dimension
with better memory scores for subjects view-
ing the neutral pure image regime. (d) illus-
trates that there was no correlation between
FD and better memory for the subjects who
viewed the mixed image regime. (e) illus-
trates that there was a correlation between
FD and better memory for the subjects who
viewed all nine segments of the pure image
regime. (f) illustrates that there was no cor-
relation between FD and better memory for
all subjects viewing the mixed or pure image
regimes.
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FIG. 6. Average fractal dimension vs memory. FD as it relates to memory during the pure image regime only is presented in the first three pure results [pure negative
(p-value= 0.014), pure categorical (p-value= 0.023), and pure neutral (p-value= 0.172)]. Subjects in the pure image regime with above average memory had higher
FDs. FD as it relates to memory for the entire pure regime only [pure (p-value= 0.040)], the entire mixed regime only [mixed (p-value= 0.602)], and the entire data set
[mixed+ pure (p-value= 0.521)] is also presented. * denotes significance.

that greater complexity of a subject’s brain data is correlated with
a positive memory outcome, which may provide a foundation for
future research possibilities.

For subjects viewing entirely mixed lists, there was no cor-
relation between memory and fractal dimensions. This result is
illustrated in Figs. 5(d) and 6 for AFD. Similarly, the data over all
pure and mixed segments together demonstrated no clear evidence
that memory was correlated with fractal dimension [Figs. 5(f) and 6].
However, for subjects viewing entirely pure lists over all nine seg-
ments, we found that 12 out of the 32 electrodes had higher fractal
dimensions as the memory score increased. This result is illustrated
in Figs. 5(e) and 6 for the AFD. Because all pure segments, whether
averaged over all nine segments [Fig. 5(e)] or binned either accord-
ing to image type [Figs. 5(a)–5(c)], show a correlation between better
memory scores and higher fractal dimensions, our findings sug-
gest that heightened memory recall may be correlated with a more
complex neurological voltage pattern. On the contrary, all mixed
segments and all pure and mixed segments together do not show
significance in fractal dimensions with memory, suggesting that the
effect can be washed out by an experience that mitigates recall.

The result in this section is supported by our analysis of mem-
ory scores. Specifically, there was no significant difference in FDs
between subjects in the mixed image regime compared to those
in the pure image regime for their corresponding memory scores
(MSs) [MS(mixed) = 44.36 vs MS(pure) = 46.21, p = 0.542]. Like-
wise, we do not find statistically different MSs when comparing
within subjects based on list types [negative (MS(mixed) = 52.04

vs MS(pure) = 55.36, p = 0.272], neutral [MS(mixed) = 35.28 vs
MS(pure) = 37.76, p = 0.474], and categorical [MS(mixed) = 45.47
vs MS(pure) = 46.01, p = 0.884]. Because there was no difference
between memory scores of the mixed and pure lists, we would not
expect to see correlation between fractal dimension and memory
when we look at the results from subjects in the pure and mixed
image regimes all together. Because the mixed regime-only analysis
shows no correlation, it is likely that the mixed image regime results
wash out the effects of the correlation between FD and memory
because the mixed image regime promotes memory recall differ-
ently than the pure image regime. Previous studies support that
recall is diminished for neutral items in mixed compared to pure lists
(Watts et al., 2014 and Barnacle et al., 2018). However, for our study,
within subjects exposed to the pure image regime only, there is sta-
tistical significance (p < 0.000 001) in MS for all inter-segment type
matches (neutral vs negative, negative vs categorical, and categori-
cal vs neutral), with the following MS values: MS(negative) = 55.36,
MS(category) 46.01, and MS(neutral) = 37.77. This result suggests
that subjects remember negative images best, followed by categor-
ical images and then neutral images. This finding is confirmed by
other studies (Talmi and McGarry, 2012 and Talmi, 2013). Viewing
the corresponding FD brain maps in Fig. 5, this result is reaffirmed
in our findings of fractal dimensions. For Fig. 5(a), the negative
segments that correspond to the highest memory recall in subjects
also correspond to the largest number of electrodes (21 electrodes)
that are significant in the correlation between memory and fractal
dimension. The categorical segments also illustrate this correlation
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but not in as many electrodes (18 electrodes) [Fig. 5(b)], and
these segments correlate with the mid-range memory scores from
subjects. Finally, the neutral segments illustrate the least number of
electrodes (four electrodes) that show correlation with memory and
fractal dimensions [Fig. 5(c)], which is consistent with the fact that
they also represent the set of images with the lowest memory recall
in subjects. Overall, the data suggest that higher memory scores
during the pure image regime are related to higher fractal dimen-
sions, which may have implications for the connection between
brain complexity and overall memory capabilities.

To protect from family wise errors when making multiple
hypotheses, results were presented for the entire cohort (represented
above as the AFD). In addition, results from a Bonferroni correction
are listed below for the 32 electrode cap, segment type, and segment
number results. For the 32-electrode cap for the pure vs mixed image
regimes, electrodes P7, PO3, and P8 had a p-value <1.5625 * 10−3

(P7 p-value = 5.9023 * 10−4, PO3 p-value = 1.527 39 * 10−3, and P8
p-value = 1.340 24 * 10−3). Similarly, for the 32-electrode cap for the
above average memory vs the below average memory pure negative
group, electrodes CP5, PO3, and Pz had a p-value <1.5625 * 10−3.
For the results of pure vs mixed image regimes on segment num-
ber, segment 2 had a p-value < 5.555 56 * 10−3. For the pure vs mixed
based on the segment type, the pure neutral vs mixed had a p-value
of 0.007, satisfying the Bonferroni correction as well. A full repre-
sentation of all of our data and the corresponding p-values can be
found in the supplementary material.

HEART RESULTS

Heart rate metrics, as recommended by the most recent
overview of heart rate variability metrics and norms (Shaffer and
Ginsberg, 2017), were also compared to list type, segment num-
ber, and memory scores. We computed the standard deviation and
mean for the RR intervals of each subject as well as the following
four short-term heart rate variability metrics: pNN50, SD1, SD2, and
SDNN (Shaffer and Ginsberg, 2017). Together, these time-domain
measurements were also investigated in relation to image regimes
and memory. We also looked at how these variables changed over
the course of the study within a subject.

Heart results: Heart rate metrics and image regimes

We found significant differences in heart rate metrics when
comparing findings between subjects exposed to the pure vs mixed
image regimes. These results are similar to our findings in the brain
with respect to fractal dimension. Specifically, we found greater
heart rate variability in subjects who viewed the mixed image regime
compared to subjects who viewed the pure image regime, simi-
lar to our findings in EEG. For example, in looking at the overall
spread in RR intervals, we found that the standard deviation of
the RR intervals was higher during the mixed image regime com-
pared to the pure image regime. The standard deviation (SD) of
the RR intervals for mixed image regime subjects is SD = 90.60 ms
and that of the pure image regime subjects is SD = 63.89 ms
(p = 0.056). The ratio of the standard deviation of RR intervals to
the mean RR intervals (SDM) was also higher during the mixed
list (SDM = 0.110 ms) compared to the pure list (SDM = 0.078 ms,

p = 0.048). This suggests a higher degree of variability in subjects’
RR intervals during the mixed list exposure when compared to the
pure list. The scaling of variability based on image regime (i.e.,
increased variability in response to the more variable mixed image
regime) is consistent with our findings in the brain as well.

For the pure vs mixed image regime comparison, we
found that pNN50 was statistically significant for segment 7
[pNN50(mixed) = 0.258 vs pNN50(pure) = 0.164, p = 0.048]. This
result shows that during this segment, pNN50 was higher for the
mixed group compared to the pure group. Segment 7 corresponds to
the neutral segment for the pure regime and is the only neutral seg-
ment sandwiched between two negative segment types. This finding
implies that the neutral image regime brought out a low heart rate
variability response in subjects, whereas the categorical and nega-
tive image regimes inspired variability similar to the mixed list that
included all image types. This suggests that neutral image regimes
could provide a baseline heart metric of dynamicity in subjects,
and this baseline could be used to compare the agility of subjects’
responses to other regimes (i.e., a mixed regime) in response to
externally applied stimuli. This is consistent with our findings in
EEG, where the neutral image regime also had the lowest, baseline
FD in comparison to the mixed image regime (Fig. 3).

SDNN also showed significance for the first neutral segment
(segment 3) to which the subject was exposed. This result, con-
sistent with our other results, showed that for the mixed group,
SDNN = 96.079 ms, whereas for the pure list, SDNN = 48.178 ms
(p = 0.026). Though not shown in the other neutral segments,
this finding in one neutral segment supports our hypothesis that
variability in EKG is present when stimulating beyond the neutral
palette. It follows that the neutral segments of the pure image regime
may be used as a baseline metric for interpreting deviations away
from the baseline as an indicator of resiliency in participants.

Findings in SD1 are similar to our findings in the heart rate
metrics above. SD1 conveys the variance of the y = mx line of the
Poincaré plot, as discussed in Shaffer and Ginsberg (2017). SD1
is a measure of short-term variability; generally, a higher SD1 is
indicative of greater heart rate variability. This is related to the
idea that the variable nature of signals coming from physiological
systems allows organisms to respond with resilience and adaptabil-
ity in various quick-response situations. In our study, findings in
SD1 mirror previously outlined heart rate metrics to give an insight
into subjects’ heart rate variability. When comparing the pure vs
mixed image regimes, SD1 showed significance in the first neu-
tral segment (segment 3), with SD1 = 79.59 ms for the mixed list
and SD1 = 29.04 ms for the pure list (p = 0.03). The higher heart
rate variability is correlated with the mixed regime once again for

TABLE III. HRV parameter values for the pure vs mixed image regimes.

HRV parameter Mixed (M; SE) (ms) Pure (M; SE) (ms) p-value

SDNN 90.57; 11.81 63.87; 6.83 0.056
pNN50 .255; .035 (%) 0.181; 0.027 (%) 0.097
SD1 67.83; 12.24 39.13; 7.33 0.05
SD2 1128.63; 27.65 1164.36; 41.59 0.477
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FIG. 7. pNN50 and SD2 for the pure image regime only subjects. This shows significance (denoted by *) within subject for different segment types. Specifically, we compare
the heart rate metric of the subject from their negative image segments to their neutral image segments, their negative image segments to their categorical image segments,
and their categorical image segments to their neutral image segments. Our study shows significant differences between neutral compared to both negative and categorical.

TABLE IV. A summary of the HRV parameters for the pure image regime comparing the negative, neutral, and categorical image types. p-values that are not significant are

labeled as “n.s.”

HRV parameter 1Negative 2Neutral 3Categorical (1−2)p-value (2−3)p-value

SDNN (ms) 59.67 59.26 64.92 n.s. n.s.
pNN50 (%) 0.189 0.164 0.187 0.022 0.007
SD1 (ms) 34.34 36.22 40.32 n.s. n.s.
SD2 (ms) 1170.79 1155.59 1167.35 0.007 0.037
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the SD1 parameter. When we look at all the segments averaged,
we also find that SD1 is higher for the mixed list (SD1 = 67.83 ms)
than for the pure list (SD1 = 39.19 ms, p = 0.050). This reinforces
the findings above and provides another avenue to see that vari-
ability is heightened by the dynamicity of the mixed image regime,
which may be important for clinically assessing heart signals based
on environmental or external stimuli.

The final heart rate metric we will present in this paper is SD2.
SD2 is a measure of the variance on y = mx + b (b = RR interval
average) of the Poincaré plot (Shaffer and Ginsberg, 2017). Higher
SD2 variance indicates higher heart rate variability (HRV) (Shaffer
and Ginsberg, 2017). However, SD2 did not illustrate any signifi-
cance based on segment number or on overall average of segments.
Out of the four heart rate metrics analyzed, this is the only one that
did not display a result for this type of analysis. As a result, pure
vs mixed image regimes do not seem to be differentiable with this
parameter. A summary of our findings in HRV parameters for the
pure vs mixed regime is shown in Table III.

We also looked at patterns in HRV for only subjects assigned
the pure image regime. The goal was to determine differences
between image types (i.e., negative, neutral, or categorical) within a
subject. SD2 and pNN50 showed significance within subjects based
on the type of images they viewed. These two metrics were inves-
tigated in subjects exposed to pure lists only (n = 31). Specifically,
we compared each subject’s heart rate metric during one image type
segment (i.e., neutral) to the same subject’s results during another
image type segment (i.e., negative). In all cases of intra-subject vari-
ability, we found that the corresponding heart rate metric was higher
during either the negative or the categorical segments when com-
pared to the neutral segments within subjects (Fig. 7). This larger
degree of variability based on image type suggests that visual arousal
is associated with heightened heart rate variability. After all, neg-
ative and categorical images promote relatedness, while negative
images also promote arousal and valence (Table II). Furthermore,
the neutral segments seem to function as a baseline when com-
pared to more arousing and related images. Categorical compared
to negative images did not have distinguishing differences in heart
rate variability, suggesting that both have induced the same level of
arousal (activation) from a cardiac perspective. This suggests that
neutrality might allow the heart to settle into a baseline state that
can serve as a control similar to the results we found in the brain.
Therefore, using these types of image sequencing might be able to
distinguish between subjects that easily adapt to a more arousing
stimulus beyond the neutral state and those whose heart rate met-
rics do not change based on the external stimulus. Reflection on our
cardiac results in the healthy heart reveals that comparison of the
pure vs mixed image regimes may provide a safe way to investigate
heart rate variability within an unhealthy subject. A summary of our
findings in HRV parameters for the pure image regime is presented
in Table IV.

Heart results: Heart rate metrics and memory

None of the heart rate metrics showed correlation with memory
scores.

Averages for all data were also included in the Heart Rate
Metric section to protect from any family wise errors. In addition,

the Bonferroni correction is needed when comparing across seg-
ment type. For these data, the negative vs neutral comparison for
SD2 and RR interval has a p-value <0.017 (0.007 and 0.004, respec-
tively). For pNN50, the categorical vs neutral has a p-value of 0.007,
satisfying this condition as well.

CONCLUSION

Physiological systems depend on the internal function as well as
the ability to react to external, environmental stimuli for adaptation
and survival. For example, the human heart beats upon activation by
an autonomous pacemaker in the heart while simultaneously being
affected by numerous neural feedback pathways. These factors work
together to produce a normal heart rate consisting of complex fluc-
tuations that occur both naturally and in response to environmental
factors (Glass, 2001). Variability has been attributed to overall heart
health; healthy subjects often display short-term variations in time
intervals between beats and a higher degree of cardiac chaos (Poon
and Merrill, 1997). Our research looked at the response of the brain
and heart to external image regimes to get a glimpse into how mini-
mal interfacing may set up patterns that could be suggestive of health
and fitness (i.e., responsiveness to external stimuli or the propensity
for better memory recall).

Our study was conducted in a pool of healthy subjects with
no heart or brain abnormalities, and our findings suggest that volt-
age patterns in subjects may be related to visual stimulation and
recall capabilities. These findings show that different image regimes
may influence the voltage pattern in the brain and heart. The mixed
image regime, which implements a constant switching between neu-
tral, categorical, and negative images, arouses more complex and
variable signals in the brain and heart when compared to the pure
image regime, which has a fixed set of images for the subject to
view. This suggests that an external, variable image regime can
evoke a physiological response in both the brain and heart, possi-
bly as an evolutionary response of the body to be more responsive
to the unpredictable and varying nature of our environment. Fur-
thermore, we found a correlation between better memory recall and
higher fractal dimension but no correlation between better memory
recall and greater heart rate variability. This second result suggests
that attentiveness may be correlated with more agility in the brain
but does not elicit a distinct response in the heart. This may sug-
gest that attentiveness does not demand or need flexible cardiac
responsiveness (possibly due to habituation). Taken together with
our previous findings, this reinforces our hypothesis that the phys-
iological response of the brain and heart can adjust accordingly to
their external environment.

Our results also show that the fractal dimension in EEG scales
with the complexity of the external image regime. For example, for
the pure vs mixed image regime, the biggest difference in complex-
ity by construction of the experiment is between the mixed regime
(most arousing) and the neutral regime (least arousing). The image
regimes get closer in their complexity as the pure image regime
is tuned from neutral, through categorical and then negative, with
the negative images being the closest in complexity to the mixed
image regime out of the three image types. The response in EEG
as expressed via the fractal dimension mirrors the tuning in com-
plexity—we find the biggest differences between the mixed image
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regime when compared to the neutral image regime and this dif-
ference starts to fade when comparing mixed and categorical image
regimes and then fades even more when comparing mixed and neg-
ative image regimes. Likewise, the variability in the heart tracks in
the same fashion, with the most complex external image regime (i.e.,
the mixed image regime) illustrating the most variability in the heart
when compared to the pure neutral image regime. Our results sug-
gest that in the heart and brain, a dynamic switching in physiological
response occurs to mirror the external trigger. Other authors have
hypothesized that these shift in fractal behavior in EEG, for exam-
ple, are a necessity for survival to switch flexibly from one state to
another when triggered. Some authors suggest a theory called the
“complexity matching effect” (Allegrini et al., 2006 and West et al.,
2008), where the complexity of the external triggers gives rise to the
fractal behavior in EEG. Many physiological systems such as the
heart also exhibit this type of behavior as a way to be an agile and
flexible in response to the stresses of the environment. Some scien-
tists have hypothesized that if nature has fractal features, the body
must also have fractal features as a system that has to continually
respond to it (Werner, 2010 and Chiavlo, 2010).

Adapting techniques from physics to dynamical systems pro-
vides a new lens through which we can understand how neurological
and cardiac processes behave. Although our work needs to be scaled
to a clinical environment, since pure and mixed image regimes are
feasible to mimic in a clinical setting, this method of stimulation
may uncover details of how certain pathologies present in the brain
and the heart. Based on the simplicity of the calculations and the
accessibility of computational techniques, our methods of analysis
may provide insight to inform the modification of clinical thera-
pies and to influence patient treatment and care. Furthermore, this
paper illustrates the ubiquity of techniques from physics in pursuit
of understanding the physical world.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complete set of all
results presented in this paper.
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