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Heart Rate Variability (HRV) can be a useful metric to capture meaningful information about
heart function. One of the non-linear indices used to analyze HRV, Detrended Fluctuation
Analysis (DFA), finds short and long-term correlations in RR intervals to capture quantitative
information about variability. This study focuses on the impact of visual and mental
stimulation on HRV as expressed via DFA within healthy adults. Visual stimulation can
activate the automatic nervous system to directly impact physiological behavior such as
heart rate. In this investigation of HRV, 70 participants (21 males) viewed images on a
screen followed by a math and recall task. Each viewing segment lasted 2min and 18 s.
The math and memory recall task segment lasted 4 min total. This process was repeated
9 times during which the participants’ electrocardiogram was recorded. 37 participants
(12 males) opted in for an additional 24-h Holter recording after the viewing and task
segments of the study were complete. Participants were randomly assigned to either a
pure (organized image presentation) or mixed (random image presentation) image regime
for the viewing portion of the study to investigate the impact of the external environment on
HRV. DFA α1 was extracted from the RR intervals. Our findings suggest that DFA α1 can
differentiate between the viewing [DFA α1 range from 0.96 (SD = 0.25) to 1.08 (SD = 0.22)]
and the task segments [DFA α1 range from 1.17 (SD = 0.21) to 1.26 (SD = 0.25)], p <
0.0006 for all comparisons. However, DFA α1 was not able to distinguish between the two
image regimes. During the 24-hour follow up, participants had an average DFA α1 = 1.09
(SD = 0.14). In conclusion, our findings suggest a graded response in DFA during short
term stimulation and a responsiveness in participants to adjust physiologically to their
external environment expressed through the DFA exponent.
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1 INTRODUCTION

The recorded electrical signal from the heart known as an
electrocardiogram (ECG) has been reported for over a century
(Barold, 2003) and can be an informative, minimally invasive
measure of the heart’s function (Lach et al., 2021). An ECG has
distinctive features such as the R peaks in the QRS complex that are
readily identifiable and analyzable. The successive R peaks known
as RR intervals provide the basis of heart rate variability (HRV)
analysis (Kuusela, 2013). These changes in the successive
heartbeats are an integral component of physiological research
and are becoming more standardized in the field (Laborde et al.,
2017; Berntson et al., 1997; Malik, 1996) to provide diagnostic
information in certain medical conditions (Yeh et al., 2009;
Gronwald et al., 2019) and insights into the parasympathetic
nervous system (Malik, 1996). Past studies have shown that
shifts in HRV can be induced by a variety of different types of
affective stimuli such as watching positive and negative videos
(Barquero-Pérez et al., 2020; Ghiasi et al., 2020), the Cold Pressor
Stress Test (Ghiasi et al., 2018; Ghiasi et al., 2020), and imagining
scenarios which evoke an emotional response (McCraty et al.,
1995). Using these different affective induction techniques,
researchers have proposed various models to measure changes
in the autonomic nervous system in reaction to an affective
stimulus. An increase in HRV suggests an increase in executive
function and mobility efficiency, whereas a decrease in HRV
suggests a higher risk for disease and mortality (Shaffer et al.,
2020). Methods used to analyze HRV include time domain
analyses such as the root mean square of successive RR interval
differences (RMSSD), the percentage of successive RR intervals
differing by more than 50ms (pNN50), and the standard deviation
of the normal-to-normal intervals (SDNN) and frequency domain
analyses such as ultra-low-frequency (ULF), very low frequency
(VLF), low-frequency (LF), and high-frequency (HF) power
(Shaffer and Ginsberg, 2017). Non-linear methods include SD1
(Raetz et al., 1991; Tulppo et al., 1996), Approximate Entropy
(ApEn) (Pincus, 1991), andDetrended Fluctuation Analysis (DFA)
(Peng et al., 1995). In this study, we investigated how visual
stimulation and mental stress tasks impact HRV using DFA.
First used in DNA sequences (Peng et al., 1993), DFA is one of
the most widely used non-linear methods to analyze HRV because
it can both decrease the impact on noise while identifying
meaningful, local trends (Cui et al., 2020).

Historically, HRV analysis can be derived from a variety of
environments including 24-hour monitoring and short-term
recordings under various external conditions (Shaffer and
Ginsberg, 2017). However, the long-term data collection
process is inconvenient, expensive, can delay a diagnosis
and in some cases may not be feasible (Heitmann et al.,
2011). While low-intensity physical tests can serve as
stimuli for research in cardiac patients, activities like
running on a treadmill may not be practical in some
patients with underlying cardiac conditions. To address
these limitations, short-interval and ultrashort-interval HRV
methods provide informative and practical assessment options
(Shaffer et al., 2016; Shaffer et al., 2020). In addition to
capturing shorter time series of data, research has shown

that participants performing more passive tasks, such as
watching movies, can be useful (Iyengar et al., 1996). By
limiting the physical motion of our participants and
stimulating via a programmable computer screen, we
designed a repeatable and consistent external environment
while attempting to minimize differences due to individual
movement. This provides a two-fold benefit for HRV analysis
by shortening the time of recordings and providing an
ultrasafe, accessible environment for patients to engage in.

DFA as a non-linear measurement of HRV can provide
insights into relatively short time series as recent studies have
suggested (Hautala et al., 2003; Yeh et al., 2009; Heitmann et al.,
2011; Gronwald et al., 2019). The detrended characteristics of the
time series derived from this method allows ECG recordings to be
succinct while maintaining the quality of the analysis (Hautala
et al., 2003). Moreover, this makes DFA independent of heart rate
to account for the different backgrounds of a study population
including fitness level, nutrition, and a balanced lifestyle
(Gronwald et al., 2019). A previous study showed a consistent,
alternating pattern of DFA α1 values in healthy participants
engaged in high intensity exercise training followed by active
recovery. This alternating pattern in DFA α1 values persisted over
the course of the study while the engagement in high intensity
training and active recovery was repeated (Gronwald et al., 2019).
Similarly, if healthy participants can also achieve consistent,
alternating changes in DFA α1 values between mental stress
tasks and viewing images, this setup may provide
complementary insight into HRV alongside traditional exercise
tests. Specifically, the ability of a healthy participant to switch
DFA α1 values consistently and repeatedly in response to a series
of alternating, external triggers may indicate good health.
Moreover, because previous studies showed that DFA α1
values tend to be much less than 1 in high-risk cardiac
patients (Peng et al., 1995; Huikuri et al., 2009), the absence of
a graded response in DFA α1 values to an external environment
may offer prognostic clinical value that is correlated with the loss
of responsiveness in fractal organization. To study this, we
explored the impact of external factors on HRV (Krstacic
et al., 2007). We placed healthy participants in short-term
stress situations and monitored 24-hour cardiac behavior in a
subset of the study population. Overall, we investigated how the
external environment such as viewing images in different
sequences and performing mental tasks impacted HRV.

2 MATERIALS AND METHOD

2.1 Participants
73 undergraduate students between the ages of 18 and 22 from
Wofford College were enrolled in this study for compensation of
either course credit or merchandise gift cards. Participants with
pulmonary embolism (n = 1) and tachycardia (n = 2) were
excluded. Each person was randomly assigned to either a pure
image regime (n = 34, 12 males) or a mixed image regime (n = 36,
9 males) during Phase I of the study. The description of a pure
image regime and a mixed image regime, as well the phases, are
presented in the next sections. Out of the 70 participants (21
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males), 37 (12 males) participated in the optional Phase II of the
study. Participants did not report a history of drug or alcohol
abuse, were not under general anesthesia in the 2 weeks prior to
testing and did not experience a traumatic physical event within
30 days of the testing. Past medical history was collected from
questionnaires for each participant prior to the start of the Phases.
Although recent physical activities prior to the start of Phase I
were not recorded, participants needed between 1 and 2 h to be
set up for the experiment. During most of this time, participants
were sitting quietly in the testing room. This provided a uniform,
baseline condition across participants before Phase I began
(Javorka et al., 2002). Our participants were a subset from the
same population of a previous study focusing on brain activity
(Aguillard et al., 2020). All participants provided written
informed consent, and procedures were approved by the
Wofford College Institutional Review Board.

2.2 Study Materials
Participants in this study were randomly assigned to two
image regimes: the pure image regime and the mixed image
regime. In the pure regime, participants viewed images from
the same image type for a total of nine segments presented in
the following order (Table 1). In the mixed regime,
participants viewed a mixture of images from all three
image types for a total of nine segments. The images in
these segments were categorized as one of the following
types: negative, neutral, and categorical. Each type of
image had different ratings in arousal, valence, and
relatedness. Arousal and valence ratings were determined
in pilot studies where participants ranked each image on a
9-point Likert scale from “calm/soothing” to “exciting/
agitating” (arousal ratings); and from “very unpleasing” to
“very pleasing” (valence ratings). Relatedness ratings were
ranked on a 7-point Likert scale from “low association” to
“high association” (Zarubin et al., 2020). Negative images
were rated as significantly more unpleasant and higher in
arousal than the neutral images (e.g., a hospitalized man, a
snake, or a boy running from a sniper). Neutral images were
rated in the middle of the valence scale from pleasant or
unpleasant, low in arousal, and low in relatedness (e.g., a man
by a car, a cup on a table, or a boy playing chess). Categorical
images were rated in the middle of the valence scale from
pleasant or unpleasant, low in arousal, and high in relatedness
(e.g., an entrance way, a kitchen scene, a man cooking in a
kitchen).

To create the image regime viewing sequence of pictures, 66
negative images were selected from 150 negative images; 66
neutral images were selected from 100 neutral images; and 66
categorical images were selected from 150 categorical images
from the International Affective Picture System (IAPS) (Lang

et al., 1999), the Geneva Affective Picture Database (Dan-Glauser
and Scherer, 2011), the Emotional Picture Set (Wessa et al., 2010),
the image pool of Talmi et al. (2007), and Google Images.

2.3 Procedure
The experiment consisted of two phases: Phase I and Phase II.
Phase I was a controlled environment where participants viewed
images and performed tasks by instruction. Phase II was a semi-
controlled environment where participants followed guidelines to
resume normal activities. An ECG was attached to participants
throughout both phases (model specifications below). Prior to
start of Phase I, participants completed the depression and
anxiety questionnaires (BDI-I and BAI) and a practice test.
The experimental time can be found in Figure 1.

2.3.1 Phase I
Phase I of the study was composed of 9 segments with 22
images in each segment. Every segment could have images
from within the same group (the pure image regime) or a
combination of all groups (the mixed image regime)
depending on the regime the participant was assigned to.
Each segment lasted 2 min and 18 s. Each image was active for
2 s followed by a 4 s fixation cross to reduce the emotional
stress that occurred during the previous image (Talmi and
McGarry, 2012). Participants were asked to view the images
in an upright sitting posture. This section of Phase I is
referred to as “viewing” throughout this manuscript. At
the conclusion of each segment (i.e., after the 22 images
were viewed), each participant was asked to perform a 1-
minute arithmetic task followed by a memory recall task for
up to 3 min. Participants reported verbally to research
assistants on what they saw during the previous viewing
segment. This results in a variable RR interval length
which is addressed later in this paper. This section of
Phase I is referred to as “task” throughout this manuscript.
The controlled environment of Phase I (viewing and tasks)
was designed to eliminate physiological differences between
participants during their resting state (Iyengar et al., 1996).
The duration of Phase I was approximately 1 h. A 3-lead ECG
was acquired via 3 flat-type electrodes (DA-AT-EXTOF1)
attached to the EXG channels of the Cortech Active Two 32
Channel EEG system (Manufacturer: Cortech Solutions;
Model Specifications: Model Number DA-AT_HCL32)
from the Behavioral Brain Sciences Center, Birmingham,
United Kingdom. Phase I data was sampled at 1.024 kHz
and Lead III was primarily used for analysis.

2.3.2 Phase II
Phase II of the study was optional and started approximately 1 h
after the conclusion of Phase I. During this phase, participants

TABLE 1 | Types of images participants saw in the pure regime during each segment.

Seg.
1

Seg.
2

Seg.
3

Seg.
4

Seg.
5

Seg.
6

Seg.
7

Seg.
8

Seg.
9

Negative Categorical Neutral Categorical Neutral Negative Neutral Negative Categorical
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wore an ECG recording device (BIOPAC Systems, Goleta, CA,
Model Number BN-LOG, 3 Lead ECG) while carrying out
normal daily activities for 24 h. Phase II data was sampled at
1 kHz, and Lead I was primarily used for analysis.

2.4 Data Processing
The 24-hour ECG data obtained from Phase II was first reviewed in
the BIOPAC systems accompanying software (AcqKnowledge) and
then exported to MATLAB for additional cleaning. In some cases,
24-hour data was directly exported to MATLAB when access to the
AcqKnowledge software was unavailable. Under either condition,
MATLAB was used to plot raw ECG voltage data. Research
assistants were trained to identify ECG signals via visual
inspection (i.e., every signal was checked for its integrity and
signal quality). If a signal had to be removed because the QRS
complex could not be identified, the signal was removed in such a
way that the cut began and ended with the same component of the
QRS complex (i.e., from the peak of one QRS wave to the peak of
another or from the beginning of one P wave to the beginning of
another), similar to other studies (Hautala et al., 2003; Yeh et al.,
2009; Krolak, et al., 2020; Mizobuchi et al., 2021). For the ECGs
collected in Phase I, data was also cleaned in MATLAB in the same
identical manner as Phase II. After all signals were cleaned, custom
writtenMATLAB code was used to identify RR peaks. P peaks and T
peaks that were mistakenly identified as R peaks by MATLAB were
also corrected by research assistants by removing those entries and
marking the correct R peaks manually. Missing peaks were not
interpolated. Of the 2min and 18 s (viewing) and up to 4 min (tasks)
for each segment, the first 2 minutes were used for analysis. Note that
since participants were required to take an arithmetic test during the
first minute of tasks, the 2 minutes of tasks in the analysis contained
a 1-minute arithmetic test and a 1-minute memory recall.
Participants missing more than 5% of the recording were
excluded from the segment of the analysis. The number of
participants excluded in each segment is presented in Table 2.

Of the collected 24.0 h of Phase II data, 15 participants were
excluded for having less than 22.8 h of recordings (i.e., missing
more than 5% of their recordings). The first 20 h of RR intervals
of the remaining 22 participants were used for analysis. DFA α1
index of HRV were then computed on the qualifying data. DFA
can quantify the fluctuations of interbeat intervals (Shaffer et al.,
2016) by looking at regions (i.e., different window sizes)
successively within short intervals and thus is suitable for
analysis of this data. Given the short time interval of each
segment, only DFA α1 is reported.

2.5 The Detrended Fluctuation Analysis
In each time series, DFA α1 is calculated by dividing segments
into window sizes (n) of 4–16 (Peng et al., 1995) and subtracting a
linear fit from within that window to detrend the data. The
fluctuation, F(n), is the root mean square of the detrended time
series. It can be calculated as:

F(n) �

������������������
1
N

∑N
k�1

[y(k) − yn(k)]2
√√

Where N is the length of the time series, yn(k) is the local trend
within each window, and y(k) is the value of the integrated time
series (Peng et al., 1995). The scaling component, DFA α1, is the
ratio of F(n) over window sizes (n) on a log-log plot. An α of 0.5
implies that the fluctuation is independent of any factors, an
uncorrelated random walk. An α of 1.5 is Brownian noise (Peng
et al., 1995). An α of 1 implies a perfect log-log correlation and is
generally found in healthy subjects (Kuusela, 2013). This healthy
behavior corresponds to the general theory of chaos theory: There
are deterministic mechanisms that appear random but offer some
predictability (Goldberger, 1996). As α increases from 1, it
suggests a decrease in fluctuation and thus deviates from the
randomness presented in chaos theory (Goldberger, 1996).

TABLE 2 | Number of participants excluded out of 70 for DFA α1 analysis.

Seg. 1 Seg. 2 Seg. 3 Seg. 4 Seg. 5 Seg. 6 Seg. 7 Seg. 8 Seg. 9

Viewing 7 2 14 2 10 3 2 5 2
Task 15 11 10 8 11 8 12 9 11

FIGURE 1 | Experimental timeline.
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Furthermore, the short-term correlations extracted through DFA
may reflect a response of the baroreceptor reflex, while the long-
term correlations reflect other regulatory mechanisms that
moderate fluctuations (Shaffer and Ginsberg, 2017).

In Phase I data, DFA α1 of each participant was computed by
finding the ratio of log F(n) vs. log n for 4 ≤ n ≤ 16; in Phase II
data, segments were divided into 2-minute periods (the length of
each image segment from Phase I) as a single 24-h time series
analysis can overlook the different activities during the day and
violate stationarity (Malik, 1996; Laborde et al., 2017). DFA for a
participant was then computed by taking the arithmetic mean of
the individual subset DFA values (Mizobuchi, 2021). This
method was implemented to address the concern (Fei et al.,
1996; Shaffer et al., 2020) of low correlation for comparing DFA
between short term (a few hours) and long term (24 h) data.
During the 24 h, there could be fluctuations in cardiac behavior
that arise due to differences between sleeping and eating, for
example. However, because participants were asked to resume
normal activities during Phase II, we approximate that any 2-
minute bin of data captures a roughly uniform period of activity.
One of our goals in our analysis of Phase II was to understand this
2-minute bin of ECG data when participants were not stimulated
by the viewing images or performing tasks as they were in Phase I.

The computation of the DFA value was done using custom
written MATLAB code (Magris, 2022). The algorithm was
checked manually to ensure that the average, summation, and
variances of the local trend were calculated correctly. The
algorithm was also verified on pre-analyzed data intervals
(Goldberger et al., 2000) to match the expected output.

2.6 Data and Statistical Analysis
Of the 2 minutes analyzed in tasks, the analysis contained a 1-
minute arithmetic test and a 1-minute memory recall. While
both tasks served as a distractor from previous images, the

nature of the tasks may bring insight about the extent of DFA
α1’s predictive power, because past work showed that adding
social evaluation increases physiological symptoms of stress in
participants (Schwabe et al., 2008). Thus, RR intervals were
analyzed with increasing temporal resolution of a segment to
take this into account.

The first resolution compared each activity to its
subsequent activity at the 2-minute scale. For example, the
1st segment of the viewing was compared to the 1st of the task
segment. The 1st segment of task was then compared with 2nd

segment of viewing, etc. for a total of 17 comparisons. In
addition, each viewing and task segment was compared to their
subsequent equivalent segments. That is, the 1st segment of
viewing was compared to the 2nd segment of viewing; the 1st

segment of task with 2nd segment of task, and so on. The
second resolution compared each minute of activity to its
subsequent minute/activity. For example, the 1st minute of
the 1st segment of viewing was compared with the 2nd minute
of the 1st segment of viewing, the 2nd minute of the 1st segment
of viewing was compared with 1st minute of the 1st segment of
task, and so on, for a total of 35 pairs of comparison.

DFA in Phase II data was calculated using a 2-minute scale.
DFA α1 was calculated for each 2-minute epoch and the 24-hour
DFA α1 for each participant was the average of all epochs. Paired
sample t-test analysis was done using SPSS (IBM SPSS Statistics
for Macintosh, Version 26.0).

3 RESULTS

During the viewing section of Phase I, participants assigned to the
pure image regime presented no differences in DFA α1 compared
to the mixed image regime participants. DFA α1 for pure regime
participants ranged from 0.99 (SD = 0.25) to 1.11 (SD = 0.22),

FIGURE 2 | DFA α1 for the two image regimes during each activity.
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while the range for mixed regime participants ranged from 0.93
(SD = 0.24) to 1.06 (SD = 0.23) (Figure 2;Table 3). Similar results
emerged during the tasks section. Specifically, DFA α1 for pure

regime participants ranged from 1.17 (SD = 0.21) to 1.28 (SD =
0.22), while the range for mixed regime participants was from
1.16 (SD = 0.17) to 1.24 (SD = 0.17) (Figure 2; Table 3). The
significance level was corrected for multiple comparisons
(Bonferroni correction, p-value threshold <0.0056). We also
did not find significant differences in the three image types
(neutral, negative, or categorical) within the pure regime
participants (Supplementary Table S1). Thus, the following
results are presented for all participants in both regimes. We
will first present our results during Phase I comparing the ECG
analysis from the viewing sections to the tasked sections of testing
and then present our findings in Phase II.

3.1 Phase I: Paired Analysis within Subjects
Between Viewing and Task Data
Throughout the study, participants DFA values alternated in
sync with the alternating pattern of the viewing and task
segments. During Phase I, the comparisons between each
activity to its subsequent activity (2-minute resolution)
presented significant differences in all 17 pairs (Figure 3;
Table 4). DFA α1 ranged from 0.96 (SD = 0.25) to 1.08 (SD
= 0.22) during viewing and from 1.17 (SD = 0.21) to 1.26 (SD =
0.25) during tasks. On the contrary, within a given segment

TABLE 3 | DFA α1 comparison between Pure Regime and Mixed Regime participants in both viewing and task. All numbers except p-values are presented as mean (SD).

Seg.
1

Seg.
2

Seg.
3

Seg.
4

Seg.
5

Seg.
6

Seg.
7

Seg.
8

Seg.
9

PURE view 0.99 (0.25) 1.01 (0.23) 1.07 (0.21) 1.07 (0.20) 1.09 (0.27) 1.08 (0.28) 1.10 (0.21) 1.10 (0.30) 1.11 (0.22)
MIX view 0.93 (0.24) 0.96 (0.26) 0.96 (0.29) 0.98 (0.24) 1.02 (0.25) 1.00 (0.26) 1.04 (0.25) 1.04 (0.25) 1.06 (0.23)
p 0.389 0.395 0.085 0.116 0.291 0.283 0.275 0.355 0.387
PURE task 1.17 (0.21) 1.24 (0.18) 1.21 (0.21) 1.23 (0.21) 1.20 (0.17) 1.28 (0.21) 1.28 (0.22) 1.22 (0.19) 1.22 (0.19)
MIX task 1.17 (0.22) 1.21 (0.23) 1.16 (0.17) 1.21 (0.19) 1.19 (0.22) 1.24 (0.17) 1.23 (0.27) 1.17 (0.19) 1.16 (0.16)
p 0.908 0.600 0.375 0.622 0.826 0.468 0.441 0.315 0.217

FIGURE 3 | DFA α1 by segments. Odd Time References represent Viewing; even Time References represent Task. Grey line connects activities chronologically.

TABLE 4 | DFA α1 2-minute comparison during Phase I. p-values are reported in
comparison with previous activity. All numbers except p-values are presented
as mean (SD).

DFA α1 p

Viewing 1 0.96 (0.25) —

Task 1 1.17 (0.21) <0.0001
Viewing 2 0.99 (0.25) <0.0001
Task 2 1.23 (0.21) <0.0001
Viewing 3 1.01 (0.26) <0.0001
Task 3 1.19 (0.19) <0.0001
Viewing 4 1.02 (0.22) <0.0001
Task 4 1.22 (0.20) <0.0001
Viewing 5 1.05 (0.26) <0.0001
Task 5 1.20 (0.20) <0.0001
Viewing 6 1.04 (0.27) <0.0001
Task 6 1.26 (0.19) <0.0001
Viewing 7 1.07 (0.23) <0.0001
Task 7 1.26 (0.25) <0.0001
Viewing 8 1.07 (0.27) <0.0001
Task 8 1.19 (0.19) 0.0006
Viewing 9 1.08 (0.22) <0.0001
Task 9 1.18 (0.18) <0.0001
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type (i.e., comparing all viewing segments or all tasks
segments), none of the same segments type showed
significant differences (Supplementary Table S2). The
significance level was corrected for multiple comparisons
(Bonferroni correction, p-value threshold <0.0029).

The comparisons between each minute of the activity
compared to its subsequent minute (1-minute resolution)
presented significant differences. 15 out of 35 minute-to-
minute consecutive transitions showed a significant change in
DFA α1 and 10 of these transitions were significant when they
occurred between the viewing segment and a task segment
(Figure 4; Supplementary Table S3). 5 out of 9 comparisons
between the 2nd minute of task to 1st minute of task presented
significant HRV differences between the arithmetic test and
memory recalls (Table 5). Out of those 5 significant

comparisons, 4 pairs came from the first half of Phase I. 0
out of 9 comparisons presented differences between the 1st

minute of viewing and the 2nd minute of viewing
(Supplementary Table S4). The significance level was
corrected for multiple comparisons (Bonferroni correction,
p-value threshold <0.0014).

3.2 Phase II: Paired Analysis Between
Viewing, Tasks, and 24-hour
During Phase II, participants had an average DFA α1 = 1.09
(SD = 0.14). Scatterplots of the epochs showed a flat trend in

FIGURE 4 | DFA α1 by segments at one-minute scale. Grey line connects activities chronologically.

TABLE 5 | DFA α1 one-minute comparison within tasks. All numbers except
p-values are presented as mean (SD).

DFA α1 p

Task1 min1 1.01 (0.24) —

Task1 min2 1.25 (0.22) <0.0014
Task2 min1 1.11 (0.27) —

Task2 min2 1.25 (0.20) <0.0014
Task3 min1 1.07 (0.28) —

Task3 min2 1.22 (0.20) <0.0014
Task4 min1 1.15 (0.32) —

Task4 min2 1.22 (0.22) 0.0846
Task5 min1 1.08 (0.24) —

Task5 min2 1.24 (0.22) <0.0014
Task6 min1 1.18 (0.26) —

Task6 min2 1.27 (0.20) 0.0036
Task7 min1 1.14 (0.28) —

Task7 min2 1.26 (0.23) <0.0014
Task8 min1 1.12 (0.29) —

Task8 min2 1.22 (0.19) 0.0018
Task9 min1 1.11 (0.29) —

Task9 min2 1.21 (0.20) 0.0067

TABLE 6 | DFA α1 comparisons between 24-hour and (viewing or task). p-values
are reported in comparison with 24-hour DFA α1.

DFA α1 p

Viewing

Viewing 1 0.99 (0.24) 0.091
Viewing 2 1.01 (0.23) 0.130
Viewing 3 1.02 (0.26) 0.380
Viewing 4 1.03 (0.22) 0.205
Viewing 5 1.05 (0.29) 0.731
Viewing 6 1.06 (0.28) 0.444
Viewing 7 1.12 (0.20) 0.416
Viewing 8 1.12 (0.28) 0.561
Viewing 9 1.13 (0.23) 0.300

Task

Task 1 1.13 (0.25) 0.424
Task 2 1.25 (0.19) <0.0028
Task 3 1.20 (0.16) 0.0059
Task 4 1.23 (0.18) <0.0028
Task 5 1.22 (0.17) 0.0030
Task 6 1.27 (0.16) <0.0028
Task 7 1.22 (0.22) 0.0031
Task 8 1.25 (0.15) <0.0028
Task 9 1.26 (0.17) <0.0028

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 8972847

Gu et al. DFA with Images and Tasks

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


82% (18 out of 22) of our participants; 18% (4 out of 22)
showed a dip for 200 of the 2-minute intervals (approximately
6.67 h). The scatterplots are available in the Supplementary
Material. 5 out of 9 comparisons showed significances
between participants’ 24-hour DFA α1 and that of tasks.
DFA α1 during the task segments ranged from 1.13 (SD =
0.25) to 1.27 (SD = 0.16) (Table 6). In contrast, 0 out of 9
comparisons showed significances between participants’ 24-
hour DFA α1 and that of viewing. DFA α1 for our 22
participants during viewing segments ranged from 0.99
(SD = 0.24) to 1.13 (SD = 0.23) (Table 6). It is worth
noting that within this subset, 5 out of 17 pairs showed
significant differences when switching from viewing to
tasks (Supplementary Table S5). The significance level
was corrected for multiple comparisons (Bonferroni
correction, p-value threshold <0.0028). Moreover, The
Phase II data on a 2-minute resolution did not present
statistically significant alternating findings, however,
because of the volume of data (about 600 comparisons per
person) it is not feasible to present. For each participant in the
study, the Supplementary Figures S1–S15 show the complete
Phase II data with a 2-minute resolution to illustrate this
finding.

4 DISCUSSION

In our study with a population of healthy young adults, our
results show that participants were responsive to unique external
environments, such as viewing and tasking, and their
physiological responses were captured via the DFA α1
parameter. Moreover, their dynamic responsiveness persisted
over the course of our study during Phase I, even as
participants likely habituated to the study environment. Our
Phase I results were also compared to Phase II, where subjects
did not exhibit these types of shifts on the same 2-minute
resolution over the course of a 24-hour period. This suggests
that the Phase I settings may be a beneficial clinical tool to capture
cardiac agility and dynamicity in response to two different
external states.

Our results showed that DFA α1 as a non-linear index of HRV
did not distinguish the different affective image regimes under
ultra-short recordings. Although previous work showed that
there can be differences in HRV measures when comparing
neutral and arousing sessions (Valenza et al., 2012) or
watching positive and negative videos (Barquero-Pérez et al.,
2020; Ghiasi et al., 2020), our findings are consistent with other
works that showed the linear HRV metric RMSSD did not
distinguish between positive and negative emotions using IAPS
(Schippers et al., 2018), and non-linear HRV metric DFA α1 did
not distinguish different emotionally arousing settings (Marín-
Morales et al., 2021). We hypothesize that because pure regime
participants knew to expect images of the same type, there may
not have been a sufficient change in emotional context to create
significant variation in their heart rate.

We also have found that DFA α1 deviated from normal,
baseline values during the viewing segments of Phase I to

more elevated values during tasks. Throughout the viewing
segments of Phase I, participants’ DFA α1 remained within
the range from 0.96 (SD = 0.25) to 1.08 (SD = 0.22). This
result implies an almost perfect log-log correlation, and are
values generally found in healthy subjects (Kuusela, 2013).
However, DFA α1 shifted to elevated values throughout the
task segments of Phase I, ranging from 1.17 (SD = 0.21) to
1.26 (SD = 0.25). The deviation of DFA α1 from 1 during tasks
suggested a decrease in fluctuation and randomness in HRV
(Goldberger, 1996). The differences in viewing and tasks reflected
by DFA α1 may be due to more active participation during the
task segments by engaging in cognitive processes such as
performing a math test and a memory recall. Looking at DFA
α1 at the one-minute resolution, during memory recall
participants had values as high as 1.27 (SD = 0.20), whereas
during the math test the highest DFA α1 = 1.18 (SD = 0.26). We
thus further hypothesize that the elevation of DFA α1 that
emerged during tasks is because the memory recall portion
was evaluated by a research assistant in real time. This
supports a previous study finding on the effects of social
evaluation to stress (Schwabe et al., 2008). The consistency in
DFA α1 across images segments was expected, as images within a
segment were designed to be the same in arousal, valence, and
relatedness throughout the 2 min. This suggests the difference in
levels of engagement can be registered via the DFA parameter.

The goal of the 24-hour Holter monitoring was to compare
changes in DFA α1 on the 2-minute resolution to the 2-minute
scale during Phase I of this study, as well as to investigate the limit
of DFA α1 in its ability to distinguish viewing and tasks.
Interestingly, DFA α1 can distinguish between the two
activities providing evidence to suggest that Phase I displays
differences when compared to variations that occur during
everyday living. The viewing segments compared to the task
segments may be able to tease out two important and unique
responses in the heart that can be meaningful depending on what
you need to find (one in response to physiological arousal and the
other in response to physiological habituation) as presented
above. Taken together (Phase I and Phase II), the external
environment appears to be a factor in how the heart responds.
We also found that most participants (82%) had roughly uniform
DFA α1 calculated with 2-minute resolution over the 24-hour
period. This may allow for limited comparison between the 24-
hour study (Phase II) and the 2-minute period (Phase I) that
needs to be validated in future studies. Overall, our results
suggested that there were notable differences in heart rate
metrics during Phase I and Phase II of this study. The 24-
hour Holter recording serves as a baseline for participants,
and the tasks segments seem to allow for participants to
exhibit a change in variability, potentially reflective of the
impact of the external environment on HRV.

The findings above may be applicable in understanding
clinical pathologies. Specifically, if the healthy heart can switch
in response to external environments, the loss of the ability to
achieve the DFA parameter switch could suggest an
abnormality. The benefit of studying healthy participants is
to understand how the healthy heart responds. We hypothesize
that a future study might find a change in the switching ability
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of unhealthy participants under these same conditions.
Specifically, because studies of congestive heart failure
(CHF) patients have shown changes in DFA values (Zhu
et al., 2014; de Morais, 2015), the magnitude of alternating
behavior in the DFA exponent may be different in participants
with underlying heart disease. Such observations can then
possibly be used in primary care clinics where patients view
images and perform simple, non-physical tasks for as few as
20 min to determine their overall HRV. The data collected this
way has the advantage of being both controlled and only
requiring a short time commitment for patients.

In addition to the clinical application, our findings also offer
insights into the newly emerged theory of network
physiology—how one’s different physiological systems coordinate
and integrate to maintain health (Balague et al., 2020). As the
name implies, organ systems and interactions among these are
represented by nodes and edges. According to the theory, network
reorganization can accompany perturbations which are then reflected
in physiological parameters. Goldberger et al. showed that in patients
with heart disease, their physiological abilities for fractal organization
deteriorates (Goldberger et al., 2002). Our participants, who have no
known heart disease, demonstrated their reorganization ability with
shifts in DFA α1 when experiencing external perturbations. Most
notably shown in Figure 3 and Figure 4, participants’ DFA α1
returned to baseline after every elevated task segment for a total of nine
times. The origin of the elevated DFA value is elucidated on the
minute-by-minute scale. During the memory recall tasks, participants
reached the highest DFA values ranging from 1.21 (SD = 0.20) to 1.27
(SD = 0.20). Past studies have shown that highly arousing emotional
stimuli engage sympathetic-adrenomedullary output which triggers a
rapid increased in cardiovascular and noradrenergic responses
(Schwabe et al., 2012). Future studies should examine to what
extent changes in regime may influence autonomic balance as it
relates to downstream cardiac effects.

Some nonlinear properties of cardiac interbeat intervals
multifractal properties of the heart have been shown to be
altered by drugs, such as beta-blockers and atropine suggesting
that chemical interventions may be able to change the heart’s
fractal nature (Nunes Amaral et al., 2001). Yet others recently
have found low effects of beta-blockers on scaling coefficients
(Castiglioni et al., 2011). In a study by Lin et al., they found the
use of beta-blockers had a significant effect on patients’ DFA α1
(Lin et al., 2001). Our findings during Phase I when comparing
DFA α1 viewing and task between subjects are similar in nature to
Nunes Amaral et al. and Lin et al.’s findings. Specifically, the
significant change occurs when switching from viewing to
tasking. What this implies is that viewing images and
completing tasks can provide an alternative, meaningful, and
noninvasive way to probe the heart function. Our results suggest
that DFA may provide complementary information to a clinical
toolbox to probe cardiac function.

5 LIMITATION

One limitation of our study is the demographics of the
participants. 70% (49 out of 70) of our participants were

female. The imbalance of gender could impede the
generalizability of this study as females could have greater
parasympathetic autonomic functions than males
(Abhishekh, 2013; Koenig and Thayer, 2016). Another
limitation is that sleeping schedules were not adjusted in
the 24-hour Holter monitoring (although only the first 20 h
of data was analyzed). Balague et al. showed that circadian
rhythms can influence temporal characteristics (Balague
et al., 2020). Also, it is important to note that in Phase I
we used Lead III for our data acquisition, and in Phase II we
used Lead I for our data acquisition. These leads were chosen
based on the best signal quality for the corresponding Phase
of the study. Recent studies show that using different leads
may impact our results (Jeyhani, 2019).

6 CONCLUSION

In conclusion, we found significant differences in the viewing versus
tasks segments of this study. These differences are magnified on the
one-minute temporal resolution scale and persist when compared to
24-hour analyses. We believe that the emergence of the alternating
DFA α1 behavior in response to a varied, external environment
could provide important insight into cardiovascular health and
fitness in a noninvasive and practical way.
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